prove that sin²*²A-cos²*²A=sin²A - cos²A
Answers
Answered by
3
Prove that cos⁴A-cos²A=sin⁴A-sin²A.
LHS = cos⁴ A - cos² A
= cos²A( cos² A - 1 )
= ( 1 - sin² A )[ -( 1 - cos² A ) ]
= ( 1 - sin² A ) ( - sin² A )
= - sin² A + sin⁴ A
= sin⁴ A - sin² A
= RHS
hope this answer helpful
rise8067:
that is cos4A, uh have done cos square A
Answered by
1
sin^4 A -cos^4 A
= (sin^2 A - cos^A)*(sin^2 A + cos^2 A)
= (sin^2 A - cos^A)*1
= (sin^2 A - cos^A)
=R.H.S.
Answered by
1
(Sin^2A)^2-(Cos^2A)^2
=Sin^2A+Cos^2A)(Sin^2A-Cos^2A)
=1×(Sin^2A-Cos^2)
=(Sin^2A-Cos^2A) Ans
=Sin^2A+Cos^2A)(Sin^2A-Cos^2A)
=1×(Sin^2A-Cos^2)
=(Sin^2A-Cos^2A) Ans
Similar questions