prove that sin2¢+cos¢=0
Anonymous:
mark my ans as brainlist if you found my ans quite helpful
Answers
Answered by
22
★Heya★
Sin (2ß) = 2 Sin (ß) × Cos (ß)
=>
Sin 2c + Cos c = 0
=>
2 Sin c × Cos c + Cos c = 0
=>
Cos c { 2 Sin c + 1 } = 0
=>
Cos c = 0
OR
{ 2 Sin c + 1 } = 0
=>
Cos c = Cos 90
c = 90
OR
Sin c = -1/2
Sin c = Sin 120
c = 120
So,
c = 90
OR
c = 120
Answered by
2
cosa-sina=root over 2 sina
cosa=(root over 2 +1) sina
sina =1÷(root over 2+1)cosa
rationalize the denominator to get:
sin(a) =(root over 2 -1) cos (a)
bring cos to other side to get:
sin(a)+cos(a)=root over 2 cos (a)
i hope u have got the answer....
Similar questions