Math, asked by avinsmallo2103, 1 year ago

Prove that sin² α + cos² (α + β) + 2 sin α sin β cos (α + β) is independent of α.

Answers

Answered by abhi178
53
we have to prove that sin² α + cos² (α + β) + 2 sin α sin β cos (α + β) is independent of α.

sin^2\alpha+\{cos(\alpha+\beta)\}^2+2sin\alpha sin\beta cos(\alpha+\beta)

= sin^2\alpha+\{cos\alpha.cos\beta-sin\alpha.sin\beta\}^2+2sin\alpha sin\beta(cos\alpha.cos\beta-sin\alpha.sin\beta)

= sin^2\alpha+cos^2\alpha cos^2\beta+sin^2\alpha sin^2\beta -2cos\alpha cos\beta sin\alpha sin\beta + 2sin\alpha sin\beta cos\alpha cos\beta - 2sin^2\alpha sin^2\beta

= sin^2\alpha+cos^2\alpha cos^2\beta -sin^2\alpha sin^2\beta

= sin^2\alpha(1-sin^2\beta)+cos^2\alpha cos^2\beta

= sin^2\alpha cos^2\beta + cos^2\alpha cos^2\beta

= cos^2\beta(sin^2\alpha+cos^2\alpha)

= cos^2\beta

we see that solution of sin² α + cos² (α + β) + 2 sin α sin β cos (α + β) doesn't appear \alpha hence, given expression is independent of \alpha
Answered by rohitkumargupta
32
HELLO DEAR,

GIVEN:-
\bold{sin^2\alpha+\{cos(\alpha+\beta)\}^2+2sin\alpha sin\beta cos(\alpha+\beta)}

=> \bold{sin^2\alpha+\{cos\alpha.cos\beta-sin\alpha.sin\beta\}^2+2sin\alpha sin\beta(cos\alpha.cos\beta-sin\alpha.sin\beta)}

=> \bold{sin^2\alpha+cos^2\alpha cos^2\beta+sin^2\alpha sin^2\beta -2cos\alpha cos\beta sin\alpha sin\beta + 2sin\alpha sin\beta cos\alpha cos\beta - 2sin^2\alpha sin^2\beta}

=> \bold{sin^2\alpha+cos^2\alpha cos^2\beta -sin^2\alpha sin^2\beta}

=> \bold{sin^2\alpha(1-sin^2\beta)+cos^2\alpha cos^2\beta}

=> \bold{sin^2\alpha cos^2\beta + cos^2\alpha cos^2\beta}

=> \bold{cos^2\beta(sin^2\alpha+cos^2\alpha)}

=> \bold{cos^2\beta}

we see that solution of sin² α + cos² (α + β) + 2 sin α sin β cos (α + β) doesn't appear \alpha hence, given expression is independent of \alpha

I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions