Math, asked by ritusharma0786, 3 months ago

prove that
sin2,
 \sin(2)  \binom{\pi}{6}   +  \cos(2)  -  \tan(2)  \binom{\pi}{4}  =  -  \binom{1}{2}

Answers

Answered by TheChaгm
35

Correct question:-

\sin(2)  \binom{\pi}{6}  +  \cos(2 \binom{\pi}{3} )  -  \tan(2)  \binom{\pi}{4 }  =  -  \binom{1}{2}

Answer:-

  • By solving L.H.S

\sin(2)  \binom{\pi}{6}  +  \cos(2 \binom{\pi}{3} )  -  \tan(2)  \binom{\pi}{4 }

  • Putting
  • \pi = 180

 \sin(2)   \binom{180}{6}  +  \cos(2)  \binom{180}{3}  -  \tan(2)  \binom{180}{4}

 \sin(2)  30 +  \cos(2) 60 -  \tan(2) 45

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now by adding :-

  • sin 30= 1/2
  • cos 60= 1/2
  • tan 45= 1

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \binom{1}{2}  {}^{2}  +  \binom{1}{2}  {}^{2}  - 1 {}^{2}

 \binom{1}{4}  +  \binom{1}{4}  - 1

 \binom{1 + 1 - 4}{4}

 \binom{2 - 4}{4}

 \binom{ - 2}{4}

 \binom{ - 1}{2}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

R.H.S :-

\sin(2)  \binom{\pi}{6}  +  \cos(2 \binom{\pi}{3} )  -  \tan(2)  \binom{\pi}{4 }  =  -  \binom{1}{2}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Proved !

Similar questions