Prove that sin² theta +( 1 / 1+ tan² theta ) =1
Answers
Answered by
5
Answer:
To prove :-
sin² θ + { 1 / ( 1 + tan² θ ) } = 1
Salutation :-
L.H.S = sin² θ + { 1 / ( 1 + tan² θ ) }
= sin² θ + { 1 / sec² θ }
[ • As we know , sec² θ - tan² = 1 , So sec² θ = 1 + tan² θ ]
= sin² θ + cos² θ
[ • We know , cos θ = 1 / sec θ , so 1 / sec² θ = cos² θ ]
= 1
[ • We know the value of sin² θ + cos² θ is 1 ]
And R.H.S = 1
So , L.H.S = R.H.S [ • Hence Proved ]
Answered by
4
Answer:
Step-by-step explanation:
Attachments:
Similar questions