Math, asked by 04jeyabalaji, 4 months ago


prove that sin2 theta/1+cos 2theta is tan theta​

Answers

Answered by anindyaadhikari13
2

Correct Question:-

➡ Prove that, \sf \frac{sin(2x)}{1+cos(2x)} = tan(x)

Proof:-

Taking LHS,

 \sf \frac{ \sin(2x) }{1 +  \cos(2x) }

 \sf =  \frac{ \sin(2x) }{1 +  \cos(2x) }  \times  \frac{1 -  \cos(2x) }{1 -  \cos(2x) }

 \sf =  \frac{ \sin(2x)(1 -  \cos(2x))  }{ {(1)}^{2} -  { \cos}^{2}(2x) }

 \sf =  \frac{ \sin(2x)(1 -  \cos(2x))  }{  \sin^{2}(2x) }

 \sf =  \frac{  \cancel{\sin(2x)}(1 -  \cos(2x))  }{   \cancel{\sin(2x) }\times  \sin(2x)  }

 \sf =  \frac{1 -  \cos(2x) }{ \sin(2x) }

 \sf =  \frac{1 - (1 -  { 2\sin }^{2}(x))}{2 \sin(x) \cos(x)  }

 \sf =  \frac{ \cancel1 - \cancel1  + 2{ \sin }^{2}(x)}{2 \sin(x) \cos(x)  }

 \sf =  \frac{ \cancel2{ \sin }^{2}(x)}{ \cancel2 \sin(x) \cos(x)  }

 \sf =  \frac{ \sin(x) }{ \cos(x) }

 \sf =  \tan(x)

Taking RHS,

 \sf =  \tan(x)

Hence,

LHS = RHS (Hence Proved)

Formulae Used:-

 \sf \mapsto { \sin}^{2}(x) +  \cos^{2} (x)  = 1 \implies{ \sin}^{2}(x) = 1 - \cos^{2} (x)

 \sf \mapsto \cos(2x)  = 1 - 2 \sin ^{2} (x)

 \sf \mapsto \sin(2x)  = 2 \sin(x)  \cos(x)

Similar questions