prove that sin20 sin40 sin60 sin80=3/16
Answers
Answer:
sin20° sin40° sin60° sin80°=3/16
∴ LHS = sin20° sin40° sin60° sin80°
= √3/2 (sin20° sin40° sin80°) ---------( ∵ sin60° = √3/2)
= (√3/2 )(sin20°)(sin40° sin80°)
using the formula sin A sin B = (1/2) [ cos(A - B) - cos(A + B) ] we get,
= (√3/2 )(sin20°) (1/2)[ cos(40°) - cos(120°) ]
= (√3/4 )(sin20°) [ cos(40°) - cos(60°) ]
= (√3/4 )(sin20°) [ cos(40°) - (1/2) ]
= (√3/4 )(sin20°cos40°) - (√3/8) (sin20°)
use the formula sin A cos B = 1/2 [ sin(A + B) + sin(A - B) ]
= (√3/4)(1/2) [ sin60° + sin(-20°) ]+ (√3/8)sin(20°)
= (√3/8) [ (√3 / 2) - sin(20°) ]+ (√3/8)sin(20°)
= 3/16 - (√3/8)sin(20°) + (√3/8)sin(20°)
= 3/16
= RHS
∴ sin20° sin40° sin60° sin80°=3/16
Step-by-step explanation: