Math, asked by Anonymous, 1 day ago

Prove that
[(sin20°)/(√3×cos20°-2×sin40°)]=1

Answers

Answered by jitendra12iitg
1

Answer:

See the explanation

Step-by-step explanation:

\displaystyle \text{LHS} =\frac{\sin20^\circ}{\sqrt 3\cos20^\circ-2\sin 40^\circ}

       \displaystyle =\frac{\sin20^\circ}{\sqrt 3\cos20^\circ-2\sin (60^\circ-20^\circ)}

      \displaystyle =\frac{\sin20^\circ}{\sqrt 3\cos20^\circ-2(\sin 60^\circ\cos 20^\circ-\sin 20^\circ\cos60^\circ)}

      \displaystyle =\frac{\sin20^\circ}{\sqrt 3\cos20^\circ-2(\frac{\sqrt3}{2}\cos 20^\circ-\sin 20^\circ(\frac{1}{2}))}

      \displaystyle =\frac{\sin20^\circ}{\sqrt 3\cos20^\circ-\sqrt3\cos 20^\circ+\sin 20^\circ}

      =\displaystyle \frac{\sin 20^\circ}{\sin20^\circ}=1=\text{RHS}

Hence proved

Similar questions