Math, asked by palakdhiman05, 8 months ago

prove that sin20° sin40° sin80° sin90° = √3/8​

Answers

Answered by vasudeo118
9

Answer:

we can write it as

Step-by-step explanation:

=sin20 sin(60-20) sin(60+20)

we should know that sinx sin(60-x) sin(60+x) = 1/4sin3x so using this

=1/4sin(3*20)

=1/4sin60

=1/4*\sqrt{3\\}/2

=\sqrt{3}/8

answer

Answered by swethassynergy
0

It is  proved that  sin20\textdegree sin40\textdegree sin80\textdegree sin90\textdegree =\frac{\sqrt{3} }{8}.

Step-by-step explanation:

Given:

sin20\textdegree sin40\textdegree sin80\textdegree sin90\textdegree =\frac{\sqrt{3} }{8}.

To Find:

It is to be proved that sin20\textdegree sin40\textdegree sin80\textdegree sin90\textdegree =\frac{\sqrt{3} }{8}.

Solution:

As given -  sin20\textdegree sin40\textdegree sin80\textdegree sin90\textdegree =\frac{\sqrt{3} }{8}.

LHS=sin20\textdegree sin40\textdegree sin80\textdegree sin90\textdegree

         =sin20\textdegree sin40\textdegree sin80\textdegree \times 1

         =\frac{1}{2} [2sin20\textdegree sin40\textdegree ]sin80\textdegree

          =\frac{1}{2} [cos(20\textdegree -40\textdegree)-cos(20\textdegree +40\textdegree) ]sin80\textdegree

          =\frac{1}{2} [cos20\textdegree-cos60\textdegree ]sin80\textdegree

          =\frac{1}{2} [cos20\textdegree-\frac{1}{2}  ]sin80\textdegree

         =\frac{1}{4} [2cos20\textdegree-1 ]sin80\textdegree

         =\frac{1}{4} [2cos20\textdegree  sin80\textdegree - sin80\textdegree]

         =\frac{1}{4} [sin(20\textdegree +80\textdegree)-sin(20\textdegree -80\textdegree) -sin80\textdegree]

          =\frac{1}{4} [sin100\textdegree -sin( -60\textdegree) -sin80\textdegree]

          =\frac{1}{4} [sin100\textdegree +sin60\textdegree -sin80\textdegree]

          =\frac{1}{4} [sin100\textdegree -sin80\textdegree +\frac{\sqrt{3} }{2}  ]

           =\frac{1}{4} [2 cos \frac{(100\textdegree+80\textdegree )}{2}  sin \frac{(100\textdegree-80\textdegree )}{2}   +\frac{\sqrt{3} }{2}  ]

          =\frac{1}{4} [2 cos90 \textdegree  sin 10\textdegree  +\frac{\sqrt{3} }{2}  ]

          =\frac{1}{4} [2\times 0\times  sin 10\textdegree  +\frac{\sqrt{3} }{2}  ]

          =\frac{1}{4} [0 +\frac{\sqrt{3} }{2}]

         =\frac{\sqrt{3} }{8}

        =RHS

LHS=RHS

Hence, It is  proved that  sin20\textdegree sin40\textdegree sin80\textdegree sin90\textdegree =\frac{\sqrt{3} }{8}.

PROJECT CODE  #SPJ3  

Similar questions