Math, asked by queenak52, 1 month ago

prove that sin²24°-sin²6°=(√5-1)/8​

Answers

Answered by UniqueOne07
0

Let us consider the LHS sin2 24° – sin2 6° As we know, sin (A + B) sin (A – B) = sin2A – sin2B Now the above equation becomes, sin2 24° – sin2 6° = sin (24° + 6°) – sin (24° – 6°) = sin 30° – sin 18° = sin 30° – (√5 – 1)/4 [since, sin 18° = (√5 – 1)/4] = 1/2 × (√5 – 1)/4 = (√5 – 1)/8 = RHS Thus proved.Read more on Sarthaks.com - https://www.sarthaks.com/658998/prove-that-sin-2-24-sin-2-6-5-1-8?show=659006#a659006

Answered by kumarianshika211
0

Let us consider the LHS sin2 24° – sin2 6° As we know, sin (A + B) sin (A – B) = sin2A – sin2B Now the above equation becomes, sin2 24° – sin2 6° = sin (24° + 6°) – sin (24° – 6°) = sin 30° – sin 18° = sin 30° – (√5 – 1)/4 [since, sin 18° = (√5 – 1)/4] = 1/2 × (√5 – 1)/4 = (√5 – 1)/8 = RHS Thus proved.

Similar questions