Math, asked by tawheed63, 11 months ago

Prove that, sin²32 + sin² 58 - tan² 45 = 0.​

Answers

Answered by akshitamanoharan7
8

Step-by-step explanation:

kindly refer the above attachment hope you understand the answer

✨MARK ME AS BRAINLIEST ✨

Attachments:
Answered by ItsMysteriousGirl
1

\huge\bf\underline{\underline{To\: Prove:}}

sin^{2} 32 + sin^{2} 58 - tan^{2} 45 =0

\huge\bf\underline{\underline{Proof:}}

LHS:

sin^{2} 32 + sin^{2} 58 - tan^{2} 45 \\  { \sin }^{2} 32 + cos ^{2}(90 - 58)  -  {tan}^{2} 45   \\  {sin}^{2} 32 +  {cos}^{2} 32 - </strong><strong>(</strong><strong>1</strong><strong>)</strong><strong> </strong><strong>^</strong><strong>2</strong><strong>\\ 1 - 1 \\ 0</strong><strong>=</strong><strong>RHS\</strong><strong>\</strong><strong>H</strong><strong>e</strong><strong>n</strong><strong>c</strong><strong>e</strong><strong> </strong><strong>Proved</strong><strong>

Formulas Used:

 sin \theta = cos(90 -  \theta) \\ {sin}^{2} \theta + cos^{2}  \theta = 1 \\

Trigonometric Values Used:

 \tan(45)  = 1

__________________________

@ItsMysteriousGirl

Similar questions