prove that
sin²45°-sin²15°=√3/4
Answers
Answered by
0
Answer:
=3‾√4=RHS.
Step-by-step explanation:
cos245∘−sin215∘
=cos245∘−sin2(45∘−30∘)(LHS)
We know that sin(−)=⋅−⋅
Therefore, LHS =cos245∘−(sin45∘⋅cos30∘−cos45∘⋅sin30∘)2
=12−(12‾√×3‾√2−12‾√×12)2
=12−(3‾√22‾√−122‾√)2
=12−(3‾√−122‾√)
= 12−((3‾√−1)28)
=12−(3‾√−1)28
=12−4−23‾√8
=12−2−3‾√4
=2−(2+3‾√)4
=3‾√4=RHS.
Hence, the problem is solved.
Similar questions