Prove That
sin²6x - sin²4x = sin2x sin10x
Answers
Here the concept of Trigonometric Identity has been used. We see that we are given a equation and we have to prove LHS = RHS. Firstly we shall use a algebraic identity to simplify this equation so that Trigonometric Identity can be applied. Then we shall apply the identity in the simplified equation to prove the given expression.
Let's do it !!
________________________________________________
★ Identities Used :-
________________________________________________
★ To Prove :-
________________________________________________
Given,
Now we shall simplify LHS separately to get the value of RHS.
Then,
We know that,
- Here a² = sin² 6x
- And b² = sin² 4x
Now using the first identity, we get
We know that,
- Here A = 6x
- And B = 4x
Now using the second identity, we get
We know that,
- Here A = 6x
- And B = 4x
Now using the third identity, we get
Now changing the position of 5, we get
We know that,
- Here θ = x
Now using fourth identity, we get
From this get,
Clearly, LHS = RHS
________________________________________________
★ More to know :-
─━─━─━─━─━─━─━─━─━─━─━─━─
☆Proof of this result :-
☆Consider RHS :-
─━─━─━─━─━─━─━─━─━─━─━─━─
☆Using identity, we get
─━─━─━─━─━─━─━─━─━─━─━─━─
Trigonometry Formulas
- sin(−θ) = −sin θ
- cos(−θ) = cos θ
- tan(−θ) = −tan θ
- cosec(−θ) = −cosecθ
- sec(−θ) = sec θ
- cot(−θ) = −cot θ
Product to Sum Formulas
- sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
- cos x cos y = 1/2[cos(x–y) + cos(x+y)]
- sin x cos y = 1/2[sin(x+y) + sin(x−y)]
- cos x sin y = 1/2[sin(x+y) – sin(x−y)]
Sum to Product Formulas
- sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
- sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
- cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
- cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]
Sum or Difference of angles
- cos (A + B) = cos A cos B – sin A sin B
- cos (A – B) = cos A cos B + sin A sin B
- sin (A+B) = sin A cos B + cos A sin B
- sin (A -B) = sin A cos B – cos A sin B
- tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
- tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
- cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
- cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
- cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A
- sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A
Multiple and Submultiple angles
- sin2A = 2sinA cosA = [2tan A /(1+tan²A)]
- cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]
- tan 2A = (2 tan A)/(1-tan²A)
─━─━─━─━─━─━─━─━─━─━─━─━─