Math, asked by mosisk700, 11 months ago

prove that. sin²A+(1/1+tan²A)=1​

Answers

Answered by deekshantsinghal7996
1

Answer:

using \:  \:  \:  \:  1 +  \tan {}^{2} ( \alpha )  =  \sec {}^{2} ( \alpha )  \\  \\  \sin {}^{2} (a)  +  \frac{1}{1 +  \tan {}^{2} (a) }  \\ sin {}^{2} (a) +  \frac{1}{ \sec {}^{2} (a) }  \\ sin {}^{2} (a) +   \cos {}^{2} (a)  \\  \\ now \:  \sin ^{2} (x)  +  \cos {}^{2} (x)  = 1 \\  \\  \\  \\ using \: it \\ sin {}^{2} a +   \cos {}^{2} (a)  = 1

Answered by curiosity93
0

Answer:

sin²A+(1/1+tan²A)=1

Step-by-step explanation:

LHS-sin²A+(1/1+tan²A)

=>sin²A+1/sec²A

By formulae

[1+tan²A=sec²A,1/sec²A=cos²A]

=>sin²A+cos²A=1

Hence LHS=RHS

Proved.

Similar questions