Prove that sin2a/1+cos2a=tana and deduce the values of tan 15 and tan22½
Answers
Answered by
8
Step-by-step explanation:
Given Prove that sin2a/1+cos2a=tana and deduce the values of tan 15 and tan 22½
- Given sin 2a / 1 + cos 2a------------1
- We know that sin 2a = 2 sin a cos a
- We know that cos 2a = 2cos^2 a – 1
- Substituting in 1 we get
- 2 sin a cos a / 1 + 2 cos^2 a - 1
- 2sin a cos a / 2 cos^2 a
- 2 sin a cos a / 2 cos a cos a
- So we get tan a
- Now tan 15 degree = tan (45 – 30)
- Now tan (a – b) = tan a – tan b / 1 – tan a tan b
- So tan (45 – 30) = tan 45 – tan 30 / 1 – tan 45 tan 30
- = 1 – 1/ √3 / 1+ 1 / √3
- Therefore tan 15 = √3 – 1 / √3 + 1
- Also tan 22 1/2 degree = √1 – cos 45 degree / 1 + cos 45 degree
- = √1 - 1/√2 / 1 + 1/√2
- = √√2 – 1 / √2 + 1
- Rationalising the denominator we get
- = √2 – 1 / √2 + 1 ,√2 – 1 / √2 – 1
- = √(√2 – 1)^2 / 2 – 1)
- So tan 22 ½ degree = √2 - 1
Reference link will be
https://brainly.in/question/1984079
Similar questions