Math, asked by donajijoy9536, 1 year ago

Prove that sin2a/1+cos2a=tana and deduce the values of tan 15 and tan22½

Answers

Answered by knjroopa
8

Step-by-step explanation:

Given Prove that sin2a/1+cos2a=tana and deduce the values of tan 15 and tan 22½

  • Given  sin 2a / 1 + cos 2a------------1
  • We know that sin 2a = 2 sin a cos a
  • We know that cos 2a = 2cos^2 a – 1
  • Substituting in 1 we get
  •         2 sin a cos a / 1 + 2 cos^2 a - 1
  •            2sin a cos a / 2 cos^2 a
  •             2 sin a cos a / 2 cos a cos a
  •                  So we get tan a
  • Now tan 15 degree = tan (45 – 30)
  • Now tan (a – b) = tan a – tan b / 1 – tan a tan b
  • So tan (45 – 30) = tan 45 – tan 30 / 1 – tan 45 tan 30
  •                           = 1 – 1/ √3 / 1+ 1 / √3
  • Therefore tan 15 = √3 – 1 / √3 + 1
  • Also tan 22 1/2 degree = √1 – cos 45 degree / 1 + cos 45 degree
  •                                        = √1 -  1/√2 / 1 + 1/√2
  •                                        = √√2 – 1 / √2 + 1
  • Rationalising the denominator we get
  •                                            = √2 – 1 / √2 + 1 ,√2 – 1 / √2 – 1
  •                                           = √(√2 – 1)^2 / 2 – 1)
  •               So tan 22 ½ degree = √2 - 1

Reference link will be

https://brainly.in/question/1984079

Similar questions