Math, asked by Alaainn718, 5 months ago

Prove That,
Sin²A + Cos²B = 1

Answers

Answered by ScanTxN
15

Question:

Prove That,

Sin²A + Cos²B = 1

Solution:

LHS:

Sin²A + Cos²B

= { \frac{Perpendicular}{Hypotenuse}×\frac{Hypotenuse}{Perpendicular} }² + { \frac{Perpendicular}{Base}×\frac{Base}{Perpendicular}

= {\frac{BC}{AC}×\frac{AC}{BC}}²+{\frac{AB}{AC}×\frac{AC}{AB}

Attachments:
Answered by MiraculousBabe
7

Answer:

L.H.S.

sin²a cos²b -cos²Asin²B

SIN²A(1-sin²B)-(1-sin²A)sin²B

sin²a -sin²Asin²B -sin²B +sin²Asin²B

sin²a -sin²B

R.H.S. PROVED

Step-by-step explanation:

Hope  \: it  \: helps...!!

Similar questions