Math, asked by abhijeet48, 1 year ago

prove that sin2A÷sina-cos2A÷cosa=secA

Answers

Answered by ashishks1912
3

GIVEN :

Prove that \frac{sin2A}{sinA}-\frac{cos2A}{cosA}=secA

TO FIND :

The given equation is true and check the equality.

SOLUTION :

Given equation is \frac{sin2A}{sinA}-\frac{cos2A}{cosA}=secA

Now taking the LHS :

\frac{sin2A}{sinA}-\frac{cos2A}{cosA}

By using the trignometric formulae :

i) sin2x=2sinxcosx

ii) cos2x=1-2sin^2x

=\frac{2sinAcosA}{sinA}-\frac{(1-2sin^2A)}{cosA}

=2cosA-\frac{(1-2sin^2A)}{cosA}

=\frac{2cos^2A-1+2sin^2A}{cosA}

=\frac{2(cos^2A+sin^2A)-1}{cosA}

By using the trignometric formula :

cos^2x+sin^2x=1

=\frac{2(1)-1}{cosA}

=\frac{1}{cosA}

By using the trignometric formula :

\frac{1}{cosx}=secx

=secA = RHS

⇒ LHS = RHS

\frac{sin2A}{sinA}-\frac{cos2A}{cosA}=secA

∴ the given equation  \frac{sin2A}{sinA}-\frac{cos2A}{cosA}=secA is true and verified.

Similar questions