Math, asked by khagendrathapa200, 13 days ago

prove that
sin²acos2b-sin²bcos2a=cos²b-cos²a

Answers

Answered by Rose3690
1

Answer:GIVEN:

sin² A cos 2B - sin² B cos 2A = cos² B - cos² A

TO PROVE:

sin² A cos 2B - sin² B cos 2A = cos² B - cos² A

FORMULAE:

cos 2x = cos² x - sin² x

sin² x = ( 1 - cos² x)

PROOF:

Let L.H.S = sin² A cos 2B - sin² B cos 2A

Let R.H.S = cos² B - cos² A

L.H.S

sin² A cos 2B - sin² B cos 2A

sin² A( cos² B - sin² B) - sin² B(cos² B - sin² B)

sin² A cos² B - sin² A sin² B - sin² B cos² A + sin² B sin² A

sin² A cos² B - sin² B cos² A

( 1 - cos² A) cos² B - (1 - cos² B)cos² A

cos² B - cos² A cos² B - cos² A + cos² B cos² A

cos² B - cos² A

R.H.S = cos² B - cos² A

L.H.S = R.H.S

HENCE PROVED.

{This is not my answer}

{Credits to owner}

:)

Similar questions