prove that
sin²acos2b-sin²bcos2a=cos²b-cos²a
Answers
Answered by
1
Answer:GIVEN:
sin² A cos 2B - sin² B cos 2A = cos² B - cos² A
TO PROVE:
sin² A cos 2B - sin² B cos 2A = cos² B - cos² A
FORMULAE:
cos 2x = cos² x - sin² x
sin² x = ( 1 - cos² x)
PROOF:
Let L.H.S = sin² A cos 2B - sin² B cos 2A
Let R.H.S = cos² B - cos² A
L.H.S
sin² A cos 2B - sin² B cos 2A
sin² A( cos² B - sin² B) - sin² B(cos² B - sin² B)
sin² A cos² B - sin² A sin² B - sin² B cos² A + sin² B sin² A
sin² A cos² B - sin² B cos² A
( 1 - cos² A) cos² B - (1 - cos² B)cos² A
cos² B - cos² A cos² B - cos² A + cos² B cos² A
cos² B - cos² A
R.H.S = cos² B - cos² A
L.H.S = R.H.S
HENCE PROVED.
{This is not my answer}
{Credits to owner}
:)
Similar questions