Math, asked by brainlyuser1712, 3 months ago

Prove that sin²Q + tan²Q + cos²Q = sec²Q

Answers

Answered by TheBrainliestUser
136

Solution:

To prove: sin²Q + tan²Q + cos²Q = sec²Q

We can prove it by both sides.

Considering L.H.S:

= sin²Q + tan²Q + cos²Q

= sin²Q + cos²Q + tan²Q

= 1 + tan²Q

= sec²Q

= R.H.S

Considering R.H.S:

= sec²Q

= 1 + tan²Q

= sin²Q + cos²Q + tan²Q

= sin²Q + tan²Q + cos²Q

= L.H.S

Trigonometric identities used:

  • sin²Q + cos²Q = 1
  • 1 + tan²Q = sec²Q

More Trigonometric identities:

  • 1 - cos²Q = sin²Q
  • 1 - sin²Q = cos²Q
  • sec²Q - tan²Q = 1
  • sec²Q - 1 = tan²Q
  • cosec²Q - cot²Q = 1
  • cosec²Q - 1 = cot²Q
  • cot²Q + 1 = cosec²Q
Answered by CopyThat
31

Given

  • sin²Q + tan²Q + cos²Q = sec²Q

To prove

  • sin²Q + tan²Q + cos²Q = sec²Q

Solution

LHS :-

  • sin²Q + tan²Q + cos²Q (sin²Q + cos²Q = 1)
  • 1 +  tan²Q (1 + tan²Q = ²Q)
  • sec²Q

RHS :-

  • sec²Q
  • 1 + tan²Q
  • sin²Q + tan²Q + cos²Q

Therefore, L.H.S = R.H.S

Similar questions