Prove that sin²Q + tan²Q + cos²Q = sec²Q
Answers
Answered by
136
Solution:
To prove: sin²Q + tan²Q + cos²Q = sec²Q
We can prove it by both sides.
Considering L.H.S:
= sin²Q + tan²Q + cos²Q
= sin²Q + cos²Q + tan²Q
= 1 + tan²Q
= sec²Q
= R.H.S
Considering R.H.S:
= sec²Q
= 1 + tan²Q
= sin²Q + cos²Q + tan²Q
= sin²Q + tan²Q + cos²Q
= L.H.S
Trigonometric identities used:
- sin²Q + cos²Q = 1
- 1 + tan²Q = sec²Q
More Trigonometric identities:
- 1 - cos²Q = sin²Q
- 1 - sin²Q = cos²Q
- sec²Q - tan²Q = 1
- sec²Q - 1 = tan²Q
- cosec²Q - cot²Q = 1
- cosec²Q - 1 = cot²Q
- cot²Q + 1 = cosec²Q
Answered by
31
Given
- sin²Q + tan²Q + cos²Q = sec²Q
To prove
- sin²Q + tan²Q + cos²Q = sec²Q
Solution
LHS :-
- sin²Q + tan²Q + cos²Q (sin²Q + cos²Q = 1)
- 1 + tan²Q (1 + tan²Q = ²Q)
- sec²Q
RHS :-
- sec²Q
- 1 + tan²Q
- sin²Q + tan²Q + cos²Q
Therefore, L.H.S = R.H.S
Similar questions