Math, asked by Anonymous, 6 months ago

Prove that sin2x=2sin(x) cos (x)​

Answers

Answered by anindyaadhikari13
3

\star\:\:\:\sf\large\underline\blue{Question:-}

  • Prove that  \sf \sin2x = 2 \sin(x)  \cos(x)

\star\:\:\:\sf\large\underline\blue{Proof:-}

We know that,

  \sf\sin( x  + y)  =  \sin(x)  \cos(y)  +  \sin(y)  \cos(x)

Here,

 \sf \sin(2x)

 \sf =  \sin(x + x)

 \sf =  \sin(x)  \cos(x)  +  \sin(x)  \cos(x)

 \sf = 2 \sin(x) \cos(x)

Therefore,

 \boxed{ \sf \sin(2x) = 2  \sin(x) \cos(x)  }

Hence Proved.

Answered by MrSmartGuy1729
6

Answer:

 \huge{ \bold{ \boxed{ \mathtt{ \green{answer}{} }{} }{} }{} }{}

»Question

  • Prove that sin2x=2sin(x) cos (x)

»Answer:-

»Given:-

  • Prove that sin2x=2sin(x) cos (x)

To prove:-

★Prove that sin2x=2sin(x) cos (x)

Step-by-step explanation:

 \bold{ \red{solution}{} }{}

 \sin(2x)  =  \:  \sin(x + x)  \\  \\  =  >  \sin(2x)  =  \:  \sin(x)  \cos(x)  +  \sin(x)  \cos(x) ........ \\  \\  =  >  \sin(A + B)  =  \:  \sin(A)  \cos(B)  +  \sin(B)  \\  \\ \bold{ \green{hence \:  \sin(2x =  \2sin(x)   \cos(x) ) ) }{} }{}

__________________________________________

Similar questions