Math, asked by gqyathri, 8 months ago

prove that Sin2x/secx+1×sec2x/sec2x+1=tan(x/2)

Answers

Answered by anthonyfeliciano579
4

Answer:

sin2x/1/cost+1×1/cos2x/1/cos2x+1

sin2x/1+coax/cosx×1/cos2x/1+cos2x/cos2x

sin2x×cos2x/1+cosx×1/1+cos2x

sin2x×cosx/1+cosx×1/cos2x

2sinx.cosx.cosx/1+cosx×1/2cosx.cosx

sind/1+cosx

2sinx/2×cosx/2/2cos squared/2

sind/2/cosx/2

tana/2

Step-by-step explanation:

Answered by RvChaudharY50
4

Question :- prove that sin 2x/sec( x+1) × sec 2x/sec (2x+1) = tan(x/2) ?

Solution :-

solving LHS,

→ {sin2x/(secx+1)} * {sec2x/(sec2x+1)}

putting :-

  • sec x = 1/cos x
  • sec 2x = 1/cos 2x

→ {sin2x/(1/cosx)+1} * {(1/cos2x)/(1/cos2x)+1}

→ {2sinxcos²x/(1+cosx)} * {1/(1+cos2x)}

putting :-

  • cos x = 2cos² x/2 - 1
  • cos 2x = 2cos² x - 1

→ {2sinxcos²x/(1 + 2cos²x/2 - 1)} * {1/(1+2cos²x - 1)}

→ {2sinxcos²x/(2cos²x/2)} * {1/(2cos²x)}

→ sinx/(2cos²x/2)

putting :-

  • sin x = 2 * sin x/2 * cos x /2

→ (2sinx/2cosx/2)/(2cos²x/2)

→ (sinx/2)/(cosx/2)

using :-

  • sin x / cos x = tan x

→ (tanx/2) = RHS (Proved.)

Similar questions