prove that sin33+cos65=cos3
Answers
Answered by
0
Answer:
Answered by
0
Step-by-step explanation:
Sin 33 + cos 63= cos 3
LHS = Sin 33 + Cos 63
Sin 33 = Sin (30+3)
Cos 63 = Cos (60+3)
Sin (A+B) = SinA Cos B + CosA Sin B
Cos (A+B) =CosA Cos B - SinA - Sin B
=Sin 30 Cos 30 + Cos 60 Cos 3 + Cos 30 Sin 3-Sin 60 Sin 3
As we know that Cos α = Sin (90-α)
=> Cos 60 = Sin 30 & Cos = Sin 60
= Sin 30 Cos 3 + Sin 30 Cos 3 + Sin 60 Sin 3 Sin 60 Sin 3
= 2 Sin 30 Cos 3
= Sin 30 1/2
=> 2 Sin 30 = 1
= Cos 3
= RHS
Similar questions