Math, asked by Novixe, 1 year ago

Prove that:
sin3A + sin2A - sinA = 4sinA × cosA/2 × cos 3A/2

Answers

Answered by cutiepie017
58
hey friend★★

here's urs ans

■■■pls see the attachment■■■

çhêéřš


hope it helps
Attachments:

cutiepie017: Mark as brainlist if it hlps
Novixe: Nice method, Didi
cutiepie017: thanku
Answered by Pitymys
22

Make use of the following trigonometric identities.

 \sin 2\theta=2\sin \theta\cos \theta

Here make use of the sum formula,

 \sin A+\sin B=2\sin (\frac{A+B}{2}) \cos (\frac{A-B}{2}) \\<br />\sin A-\sin B=2\sin (\frac{A-B}{2}) \cos (\frac{A+B}{2})

Thus,

 \sin 2A-\sin A=2\cos (\frac{3A}{2}) \sin (\frac{A}{2})  .

 LHS=\sin 3A+\sin 2A-\sin A\\<br />LHS=2\sin (\frac{3A}{2}) \cos (\frac{3A}{2}) +2\cos (\frac{3A}{2}) \sin (\frac{A}{2}) \\<br />LHS=2\cos (\frac{3A}{2}) [\sin (\frac{3A}{2}) + \sin (\frac{A}{2}) ]\\<br />LHS=2\cos (\frac{3A}{2}) [2\sin (\frac{3A+A}{4}) \cos (\frac{3A-A}{4})]\\<br />LHS=2\cos (\frac{3A}{2}) [2\sin (A) \cos (\frac{A}{2})]\\<br />LHS=4\sin (A) \cos (\frac{A}{2})\cos (\frac{3A}{2}) =RHS

The proof is complete.

Similar questions