Math, asked by sanskrutisonawane934, 18 days ago

prove that sin3theta=3sin theta-4sin^3theta​

Answers

Answered by MysticSohamS
24

Answer:

your proof is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove :  \\ sin  \: 3θ = 3.sin \: θ - 4.sin {}^{3} θ \\  \\ sin \: 3θ = sin(2θ + θ) \\  \\  = sin \:2 θ.cos \: θ + sin \: θ.cos \: 2θ \\  \\  =( 2.sin \: θ.cos \: θ.cos \: θ) + sin \: θ(1 -2 sin {}^{2} θ) \\  \\  = 2.sin \: θ.cos {}^{2} θ + sin \: θ - 2.sin {}^{3} θ \\  \\  = 2.sin \: θ(1 - sin {}^{2} θ) - 2.sin {}^{3} θ + sin \: θ \\  \\  = 2.sin \: θ - 2.sin {}^{3} θ - 2.sin {}^{3} θ + sin \: θ \\  \\  = 3.sin \: θ - 4.sin {}^{3} θ

Similar questions