Prove that: (sin3x+sinx)sinx+(cos3x-cosx)cosx=0
Answers
Answered by
2
here is the answer again sorry for my writing skill
Attachments:
Answered by
7
Answer:
(sin3x+sinx)sinx+(cos3x-cosx)cosx = 0
Step-by-step explanation:
(sin3x+sinx)sinx+(cos3x-cosx)cosx
Using SinA + SinB = 2Sin((A + B)/2) Cos((A-B)/2)
& CosA - CosB = - 2Sin((A + B)/2) Sin((A-B)/2)
Here A = 3x B = x
= (2 Sin2x * Cosx )Sinx + (- 2Sin2x * Sinx) Cosx
= 2Sin2x CosxSinx - 2Sin2xSinxCosx
= 0
= RHS
QED
Proved
(sin3x+sinx)sinx+(cos3x-cosx)cosx = 0
Similar questions