Math, asked by choudhurygeeta564, 19 days ago

Prove that
(sin3xcosx-sin6xcos3x)/(cos2xcosx-sin4xsin3x) = tan2x
pls help i need it urgently

Answers

Answered by vaishubh1707
0

Correct question:-

Prove that

 \\\frac {(sin8xcosx-sin6xcos3x)}{(cos2xcosx-sin4xsin3x)} = tan2x

Answer:-

LHS =

 \\\frac {(sin8xcosx-sin6xcos3x)}{(cos2xcosx-sin4xsin3x)}\\

By multiplying numerator and denominator by 2,

 \\=\frac {(2sin8xcosx-2sin6xcos3x)}{(2cos2xcosx-2sin4xsin3x)}\\

By\:\:using\: \:formula\:\:(Product\: \:to \:\:sum) ,\\

\boxed{2sinAcosB = sin(A+B) + sin(A-B) }\\

\boxed{-2sinAsinB = cos(A+B) -cos(A-B) }\\

\boxed{2cosAcosB = cos(A+B) + cos(A-B)}\\

 \\=\frac {[sin(8x+x)+sin(8x-x)]- [sin(6x+3x)+sin(6x-3x)]}{[cos(2x+x)+cos(2x-x)]+[cos(4x+3x) -cos(4x-3x)]}\\

 \\=\frac{[sin9x+sin7x]- [sin9x+sin3x]}{[cos3x+cosx]+[cos7x-cosx]}\\

 \\=\frac {sin7x-sin3x}{cos3x+cos7x}\\

By using formula (Sum to product) , \\

 \\=\frac {2×cos[(7x+3x)/2]×sin[(7x-3x)/2]}{2×cos[(7x+3x)/2]×cos[(7x-3x)/2]}\\

 \\=\frac {2×cos5x×sin2x}{2×cos5x×cos2x}\\

 \\=\frac {sin2x}{cos2x}\\

= tan2x

= RHS

 \\

HENCE PROVED

Similar questions