Prove that: sin4 A + cos⁴ A = 1 – 2sin² A cos²A
Answers
Step-by-step explanation:
We have,
LHS = sin 4 A - cos 4 A
⇒ LHS = (sin 2 A) 2 −(cos 2 A) 2
⇒ LHS = (sin 2 A+cos 2 A)(sin 2 A−cos 2 A)
⇒ LHS = sin 2 A −cos 2 A [∵sin 2 A+cos 2 A=1]
⇒ LHS = sin 2 A −(1−sin 2 A ) = 2sin 2 A−1
⇒ LHS = 2(1−cos 2A)−1=1−2cos 2
A = RHS
To prove :
sin⁴ A + cos⁴ A = 1 – 2sin² A cos²A
Proof :
LHS :
sin⁴ A + cos ⁴ A
=> [ sin² A ]² + [ cos ² A ]²
Let , sin ²A = k , and cos² A = l
=> k² + l²
=> k² + l² + 2kl - 2kl
=> ( k + l )² - 2kl
Note : Instead of using ( a + b)² algebraic identity , we could have used ( a - b)² but didn't because of the property that , sin² A + cos²A = 1 or k + l = 1 .
=> [ sin² A ] + [ cos² A ]² - 2 [ sin²A ][ cos² A ]
=> 1 - 2 sin²A cos ² A
Hence Proved
________________________________
Additional Information :
- sin² A + cos² A = 1
- tan² A + 1 = sec ² A
- cot² A + 1 = cosec² A
_________________________________