Math, asked by rutujamavale10c, 2 months ago

Prove that : sin⁴θ - Cos⁴θ = 1-2cos²θ​

Answers

Answered by rishu6845
2

Step-by-step explanation:

  \pink{lhs} = {sin  }^{4}  \theta -  {cos}^{4}  \theta \\  {( {sin}^{2} \theta) }^{2} -  { ({cos }^{2} \theta) }^{2}   \\  = ( {sin}^{2}  \theta +  {cos}^{2}  \theta) \: ( {sin}^{2}  \theta -  {cos}^{2}   \theta) \\  = (1)( - ( {cos}^{2}  \theta -  {sin}^{2}  \theta)) \\  =  -  {cos}^{2}  \theta +  {sin}^{2}  \theta \\  =  -  {cos}^{2}  \theta + 1 -  {cos}^{2}  \theta \\  = 1 - 2 {cos}^{2}  \theta =  \pink{rhs}

Similar questions