Prove that sin⁴∅+cos⁴∅=1-2sin²∅cos²∅
Answers
Answered by
5
Answer:
(a+b)² = a²+b²+2ab
a²+b² = (a+b)² - 2ab -------( eq 1 )
given:-
LHS = sin⁴∅+cos⁴∅
= (sin²∅)² + (cos²∅)²
= (sin²∅ + cos²∅)² - 2sin²∅cos²∅ (same as eq 1)
= 1² - 2sin²∅cos²∅ (since sin²∅+cos²∅=1)
= 1 - 2sin²∅cos²∅ = RHS
Hence proved
Similar questions