Math, asked by batralavika, 1 year ago

Prove that: (sin4θ-cos4θ+1)cosec2θ=2

Answers

Answered by Anonymous
31
HEY Buddy......!! here is ur answer

we have to prove that :

( { \sin}^{4} \alpha - { \cos }^{4} \alpha + 1) { \csc }^{2} \alpha = 2 \\ \\ On \: taking \: L.H.S. \\ \\ ( { \sin}^{4} \alpha - { \cos }^{4} \alpha + 1) { \csc }^{2} \alpha \\ \\ = > [( { \sin}^{2} \alpha - { \cos }^{2} \alpha )( { \sin }^{2} \alpha + { \cos }^{2} \alpha ) + 1] { \csc }^{2} \alpha \\ \\ As \: we \: know \: that... \: {a}^{2} - {b}^{2} = (a + b)(a - b) \: and \: { \sin }^{2} \alpha + { \cos}^{2} \alpha = 1 \\ \\ = > ( { \sin }^{2} \alpha - { \cos }^{2} \alpha + 1) { \csc }^{2} \alpha \\ \\ = > 2 { \sin }^{2} \alpha { \csc}^{2} \alpha \\ \\ = > 2 = \: R.H.S. \\ \\ As \: we \: know \: that....sin \alpha . \csc\alpha = 1

I hope it will be helpful for you....!!

THANK YOU ✌️✌️

MARK IT AS BRAINLIEST

Anonymous: i didn't highlight it because i thought u didn't have any problem to get it
batralavika: bt how can we take sin2A common ?
Anonymous: where did i take common sin²A
Anonymous: ??
batralavika: then how can u write sin2A+sin2a?
Anonymous: sin²A–cos²A+1 => sin²A+1–cos²A => sin²A+sin²A => 2sin²A
Anonymous: because 1–cos²A = sin²A
batralavika: okok...got it !!! thaks a lot!! :)
Anonymous: i hope now you have got it
Anonymous: hm
Answered by jitumahi435
4

To prove that:  (\sin^4 \theta - \cos^4 \theta + 1)\csc^2 \theta = 2.

Solution:

L.H.S. = (\sin^4 \theta - \cos^4 \theta + 1)\csc^2 \theta

= ((\sin^2 \theta)^2 - (\cos^2 \theta)^2 + 1)\csc^2 \theta

Using the algebraic identity,

a^{2} -b^{2} = (a + b)(a - b)

= ((\sin^2 \theta + \cos^2 \theta)(\sin^2 \theta - \cos^2 \theta)+ 1)\csc^2 \theta

Using the trigonometric identity,

\sin^2 A + \cos^2 A = 1

= ((1)(\sin^2 \theta - \cos^2 \theta)+ 1)\csc^2 \theta

= ((\sin^2 \theta - \cos^2 \theta)+ 1)\csc^2 \theta

Using the trigonometric identity,

\cos^2 A = 1 - \sin^2 A

= ((\sin^2 \theta - (1 - \sin^2 \theta ) + 1)\csc^2 \theta

= (\sin^2 \theta - 1 + \sin^2 \theta  + 1)\csc^2 \theta

= (2 \sin^2 \theta )\csc^2 \theta

Using the trigonometric identity,

\csc A =\dfrac{1}{\sin A}

= (2 \sin^2 \theta )\dfrac{1}{\sin^2 \theta}

= 2

= R.H.S., proved.

Thus, (\sin^4 \theta - \cos^4 \theta + 1)\csc^2 \theta = 2, proved.

Similar questions