Prove that sin43•cos47•+cos43•sin47•=1
Answers
Answered by
10
sin43 × cos47 + cos43 × sin47
= sin43 × sin(90-47) + cos43 × cos(90-47) --- (1)
= sin43 × sin43 + cos43 × cos43
= (sin4 3)^2 + (cos43)^2
= 1 -------- (2)
Formulas used in
1) sinA = cos(90-A)
2) (sinA)^2 + (cosA)^2 = 1
= sin43 × sin(90-47) + cos43 × cos(90-47) --- (1)
= sin43 × sin43 + cos43 × cos43
= (sin4 3)^2 + (cos43)^2
= 1 -------- (2)
Formulas used in
1) sinA = cos(90-A)
2) (sinA)^2 + (cosA)^2 = 1
Answered by
7
LHS=sin43.sin(90-47)+cos43.cos(90-47)
=sin43.sin43+cos43.cos43
=sin^2 43+cos^2 43(sin^2 a+cos^2 a=1)
=1
please mark as brainliest!!!!!!!!!!!!!!!
Similar questions