Prove that: Sin⁴A=1/8(3-4Cos2A+Cos4A)
Answers
Answered by
7
Answer:
sin⁴A => (sin²A)(sin²A)
Now, cos2A => 1 - 2sin²A
so, sin²A = (1 - cos2A)/2
Then, sin⁴A = [(1 - cos2A)/2][(1 - cos2A)/2]
=> (1/4)[1 - 2cos2A + cos²2A]
And cos2A => 2cos²A - 1
so, cos4A => 2cos²2A - 1
i.e. cos²2A = (cos4A + 1)/2
Then, (1/4)[1 - 2cos2A + ((cos4A + 1)/2)]
=> (1/8)[2 - 4cos2A + cos4A + 1]
Hence, (1/8)[3 - 4cos2A + cos4A]
Step-by-step explanation:
pls mark me as brainliest ❣❣
Similar questions