History, asked by multinepalagro, 9 months ago

Prove that : (sin4A /cos 2A) (1-cos 2A/1-cos4A) = tan A

Answers

Answered by bananimishra24
5

Answer:

hey mate

Explanation:

Answer:

Step-by-step explanation:

Given :

To Prove :

$$\frac{sin \ 4A \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ cos \ 4A} = tan \ 2A$$

Proof :

We know that,

sin 2A = 2 sin A cos A

cos 2A = 2 cos²A - 1

LHS = $$\frac{sin \ 4A \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ cos \ 4A}$$

⇒ $$\frac{sin \ 2(2A) \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ cos \ 2(2A)}$$

⇒ $$\frac{(2 \ sin \ 2A \ cos \ 2A) \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ (2cos^22A \ - \ 1)}$$

⇒ $$\frac{(2 \ cos \ 2A \ + \ 1) sin \ 2A}{ \ cos \ 2A \ + \ 2cos^22A}$$

⇒ $$\frac{(2 \ cos \ 2A \ + \ 1) sin \ 2A}{(1 \ + \ 2cos \ 2A) \ cos \ 2A}$$

⇒ $$\frac{sin \ 2A}{cos \ 2A} = tan \ 2A$$ = RHS

Hence, proved.

hope you like it

Similar questions