Prove that : (sin4A /cos 2A) (1-cos 2A/1-cos4A) = tan A
Answers
Answered by
5
Answer:
hey mate
Explanation:
Answer:
Step-by-step explanation:
Given :
To Prove :
$$\frac{sin \ 4A \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ cos \ 4A} = tan \ 2A$$
Proof :
We know that,
sin 2A = 2 sin A cos A
cos 2A = 2 cos²A - 1
LHS = $$\frac{sin \ 4A \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ cos \ 4A}$$
⇒ $$\frac{sin \ 2(2A) \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ cos \ 2(2A)}$$
⇒ $$\frac{(2 \ sin \ 2A \ cos \ 2A) \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ (2cos^22A \ - \ 1)}$$
⇒ $$\frac{(2 \ cos \ 2A \ + \ 1) sin \ 2A}{ \ cos \ 2A \ + \ 2cos^22A}$$
⇒ $$\frac{(2 \ cos \ 2A \ + \ 1) sin \ 2A}{(1 \ + \ 2cos \ 2A) \ cos \ 2A}$$
⇒ $$\frac{sin \ 2A}{cos \ 2A} = tan \ 2A$$ = RHS
Hence, proved.
hope you like it
Similar questions