Prove that sin4A-cos4A=1-2cos2A
Answers
Answered by
117
Heya!
⇒sin^4A-cos^4A
⇒(sin²A)²-(cos²A)²
⇒(sin²A+cos²A )(sin²A-cos²A).
⇒(1)(1-cos²A-cos²A)
⇒1-2cos²A..
LHS=RHS
Hope this helps you ☺☺
⇒sin^4A-cos^4A
⇒(sin²A)²-(cos²A)²
⇒(sin²A+cos²A )(sin²A-cos²A).
⇒(1)(1-cos²A-cos²A)
⇒1-2cos²A..
LHS=RHS
Hope this helps you ☺☺
ManishParab:
thanks yar
Answered by
49
HELLO DEAR,
GIVEN:-
sin⁴A - cos⁴A = 1 - 2cos²A
we know:- (a⁴ - b⁴) = (a² - b²)(a² + b²)
using this property,
we get,
(sin²A - cos²A)(sin²A + cos²A)
[as sin²θ + cos²θ = 1]
therefore, ( 1 ) *(sin²A - cos²A)
=> {(1 - cos²A) - cos²A}
=> (1 - 2cos²A) [hence, proved]
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions