Math, asked by Ansh000000000007, 4 months ago

Prove that:

(sin⁴A - cos⁴A +1)cosec²A = 2

Answers

Answered by EnchantedGirl
35

\bigstar \underline{\underline{\sf \bf To\ Prove:-}}\\\\

  • \sf (Sin^4 A - Cos^4A+1)Cosec^2A=2

\\

\bigstar \underline{\underline{\sf \bf Proof:-}}\\\\

\sf LHS : (Sin^4 A - Cos^4A+1)Cosec^2A\\\\\\

[As CosecA = 1/sin A]

\\

\sf :\implies (Sin^4 A-cos^4 A+1)(\frac{1}{Sin^2A})

:\implies \sf \frac{Sin^4 A}{sin^2 A} - \frac{Cos^4 A}{Sin^2 A} +\frac{1}{sin^2 A} \\\\\\:\implies \sf Sin^2 A-\frac{cos^2A(cos^2A)}{sin^2A} +\frac{1}{Sin^2A} \\\\\\

[ Cos ²A = 1-sin²A ]

\\

:\implies \sf sin^2 A -\frac{cos^2 A(1-sin^2 A)}{sin^2A} + \frac{1}{Sin^2A} \\\\\\:\implies \sf sin^2 A - \frac{cos^2 A}{sin^2 A} +\frac{sin^2Acos^2A}{sin^2A} + \frac{1}{sin^2 A} \\\\\\

:\implies \sf sin^2 A - \frac{cos^2A}{sin^2A}+cos^2A +\frac{1}{sin^2A} \\\\\\:\implies \sf 1+ \frac{(1-cos^2A)}{sin^2A} \\\\\\:\implies \sf 1+ (\frac{sin^2 A}{sin^2A})\\\\\\:\implies \sf 1+1 = 2 .\\\\ =RHS.\\\\

\\

Hence proved !

\\

_________________

Similar questions