prove that sin⁴A - cos⁴A = 2sin²A - 1
Answers
Answered by
17
Given to prove :-
sin⁴A - cos⁴A = 2sin²A-1
Solution:-
Take L.H.S that is
sin⁴A - cos⁴A
sin⁴ A can be written as (sin²A)²
Similarily,
cos⁴ A can be written as (cos²A)²
So, substitute the values,
= (sin²A)² - (cos²A)²
It is in form of a² -b² = (a+b)(a-b)
So,
(sin²A +cos²A)(sin²A-cos²A)
From trigonometric identities We know that ,
sin²A + cos²A = 1 So,
1(sin²A -cos²A)
sin²A - cos²A ------ eq 1
So, we know that ,
sin²A + cos²A = 1
cos²A = 1-sin²A ------ substitute this value in eq 1
sin²A - (1-sin²A)
sin²A - 1 + sin²A
2sin²A - 1
Hence , proved !
USED FORMULAE:-
Trigonmetric identity :-
- sin²A + cos²A = 1
- sin²A = 1-cos²A
Algebraic Identitiy
- (a+b)(a-b) = a²-b²
Know more :-
Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trigonometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trigonometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj
Similar questions
History,
29 days ago
English,
29 days ago
Hindi,
29 days ago
English,
2 months ago
Math,
2 months ago
World Languages,
9 months ago
Computer Science,
9 months ago