Math, asked by kshitijasawane1202, 8 months ago

Prove that
(sin4theta - cos4theta + 1)cosec²theta = 2 ​

Answers

Answered by prince5132
12

GIVEN :

  • (sin4∅ - cos4∅ + 1) cosec²∅ = 2.

TO PROVE :-

  • L.H.S = R.H.S.

SOLUTION :-

L.H.S,

 \\  : \implies \displaystyle\sf \: \bigg(  \sin4 \theta -  \cos \theta + 1 \bigg) \csc^{2} \theta \\  \\  \\

: \implies \displaystyle\sf \: \Bigg[ \bigg( \sin ^{2}  \theta \bigg) ^{2}   - \bigg( \cos^{2}  \theta \bigg) ^{2}    + 1 \Bigg ]\csc^{2} \theta \\  \\  \\

\bullet \displaystyle\sf \:using \: identity \:  \div  \: a ^{2}  - b ^{2}  = (a + b)(a - b) \\  \\  \\

: \implies \displaystyle\sf \:\Bigg[ \bigg( \sin ^{2}  \theta  +  \cos^{2}  \theta\bigg )  \bigg(\sin ^{2}  \theta -  \cos^{2}  \theta \bigg)     + 1 \Bigg ]\csc^{2} \theta \\  \\  \\

 \bullet \: \displaystyle\sf  \: using \: identity  \: \div  \: \sin ^{2}  \theta  +  \cos^{2}  \theta = 1 \\  \\  \\

: \implies \displaystyle\sf \Bigg[   1 \bigg(\sin ^{2}  \theta -  \cos^{2}  \theta \bigg)     + 1 \Bigg ]\csc^{2} \theta \\  \\  \\

: \implies \displaystyle\sf \Bigg[    \bigg(\sin ^{2}  \theta -  \cos^{2}  \theta \bigg)     + 1 \Bigg ]\csc^{2} \theta \\  \\  \\

: \implies \displaystyle\sf \Bigg[   \sin ^{2}   \theta   + \bigg(1-  \cos^{2}  \theta \bigg) \Bigg ]\csc^{2} \theta \\  \\  \\

\bullet \: \displaystyle\sf using \: identity \:  \div  \: \sin ^{2}   \theta    =  1-  \cos^{2}  \theta \\  \\  \\

: \implies \displaystyle\sf \Bigg[   \sin ^{2}   \theta   +  \sin ^{2}   \theta  \Bigg ]\csc^{2} \theta \\  \\  \\

: \implies \displaystyle\sf  \Bigg[ \bigg(2 \sin ^{2}  \theta \bigg) \bigg( \csc ^{2}  \theta \bigg) \Bigg ] \\  \\  \\

 \bullet \:  \displaystyle\sf using \: identity \: \csc ^{2}  \theta =  \dfrac{1}{ \sin ^{2}  \theta}  \\  \\  \\

: \implies \displaystyle\sf \: 2 \cancel{\sin \theta \times }  \dfrac{1}{  \cancel{\sin ^{2}  \theta}}  \\  \\  \\

: \implies \underline{ \boxed{ \displaystyle\sf2}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \lgroup \displaystyle\sf \: L.H.S\bigg \rgroup \\  \\

________________________

 \\  \\ \dashrightarrow  \bigg \lgroup \displaystyle\sf \: L.H.S\bigg \rgroup   =  \bigg \lgroup \displaystyle\sf \: R.H.S\bigg \rgroup   \\  \\

HENCE PROVED.

Answered by Anonymous
6

Answer:

Step-by-step explanation:

Answer Expert Verified

4.0/5

589

ARoy

(sin⁴θ-cos⁴θ+1)cosec²θ

=[{(sin²θ)²-(cos²θ)²}+1]cosec²θ

=[{(sin²θ+cos²θ)(sin²θ-cos²θ)}+1]cosec²θ

=(sin²θ-cos²θ+1)cosec²θ [∵, sin²θ+cos²θ=1]

={sin²θ+(1-cos²θ)}cosec²θ

=(sin²θ+sin²θ)cosec²θ

=2sin²θ.cosec²θ

=2sin²θ×1/sin²θ

=2 (Proved)

Similar questions