Math, asked by harshrj77800, 6 months ago

Prove That:-
Sin⁴thita - cos⁴thita = 1-2cos²thita.​

Attachments:

Answers

Answered by Pratik2759
1

Step-by-step explanation:

sin⁴A-cos⁴A=(sin²)²A-(cos²)²A

since a²-b²=(a+b)(a-b)

therefore

sin⁴A-cos⁴A=(sin²A+cos²)(sin²-cos²)

=1(1-cos²-cos²)

=1-2cos²A...hence proved

Answered by gopikalu624
1

Step-by-step explanation:

LHS

Sin⁴θ-Cos⁴θ

=(Sin²θ)²-(Cos²θ)²

=(Sin²θ+Cos²θ)(Sin²θ-Cos²θ)

=1(Sin²θ-Cos²θ)

=Sin²θ-Cos²θ

=1-Cos²θ-Cos²θ {∵Sin²θ=1-Cos²θ}

=1-2Cos²θ

=RHS

PROVED

Similar questions