Prove that sin5θ + sinθ = 2 sin3θ cos 2θ
Answers
Answered by
1
Answer:
As sin(+sin1)=2sin
2
(+1)
cos
2
(−1)
⇒sin5θ+sinθ=2sin3θcos2θ=sin3θ
⇒sin3θ(2cos2θ−1)=0
⇒sin3θ=0
⇒3θ=nπ
⇒θ=
3
nπ
or 2cos2θ−1=0
⇒cos2θ=
2
1
⇒2θ=2nπ±
3
π
⇒θ=nπ±
6
π
.
Answered by
0
As sin(+sin1)=2sin
2
(+1)
cos
2
(−1)
⇒sin5θ+sinθ=2sin3θcos2θ=sin3θ
⇒sin3θ(2cos2θ−1)=0
⇒sin3θ=0
⇒3θ=nπ
⇒θ=
3
nπ
or 2cos2θ−1=0
⇒cos2θ=
2
1
⇒2θ=2nπ±
3
π
⇒θ=nπ±
6
π
.
Attachments:
Similar questions