History, asked by Letmein123, 3 months ago

Prove that

sin50+sin40=\sqrt{2} sin85°​

Answers

Answered by Mister360
1

Answer:

To prove:-

\sf sin50°+sin40°=\sqrt{2}sin85°

Proof:-

LHS:-

\qquad\quad \sf{:}\rightarrowtail sin50°+sin40°

\qquad\quad \sf{:}\rightarrowtail sin (45+5)°+sin (45-5)°

\qquad\quad \sf{:}\rightarrowtail sin45.cos5+cos45.sin5+sin45.cos5-cos45.sin5

\qquad\quad \sf{:}\rightarrowtail \sqrt{2}sin85

proved

Answered by AbhinavRocks10
4

</p><p>[tex] \\  \\  \\  \\ </p><p>To prove:-</p><p></p><p>\sf sin50°+sin40°=\sqrt{2}sin85°sin50°+sin40°=2sin85° \</p><p></p><p>Proof:- \ </p><p></p><p>LHS:-</p><p></p><p>\qquad\quad \sf{:}\rightarrowtail sin50°+sin40°:↣sin50°+sin40°</p><p></p><p>\qquad\quad \sf{:}\rightarrowtail sin (45+5)°+sin (45-5)°:↣sin(45+5)°+sin(45−5)°</p><p></p><p>\qquad\quad \sf{:}\rightarrowtail sin45.cos5+cos45.sin5+sin45.cos5-cos45.sin5:↣sin45.cos5+cos45.sin5+sin45.cos5−cos45.sin5</p><p></p><p>\qquad\quad \sf{:}\rightarrowtail \sqrt{2}sin85:↣2sin85</p><p></p><p>proved[/tex]

Similar questions