Prove that:
(sin5A - 2 sin3A + sinA) / (cos5A - cosA) = tanA
Answers
Answered by
1
Answer:
Solution :
1)=sin5A-sin3Acos5A+cos3A
=2sin(5A-3A2)cos(5A+3A2)2cos(5A+3A2)cos(5A-3A2)
=sinAcosA
=tanA
RHS
2)=sinA+sin3AcosA+cos3A
=(2cos((A-3A)/2)sin((A+3A)/2))/(2cos((A+3A)/2)cos((A-3A)/2)
=(2cos(-A)sin2A)/(2cos2Acos(-A)
=(sin2A)/(cos2A)
=tan2A
RHS
Answered by
0
Step-by-step explanation:
first use SinC+SinD and CosC+cosD formula
then solve and at last use Cos2A and Sin2A formula.
Attachments:
Similar questions