Math, asked by veeresh1937, 4 days ago

prove that sin5x-2sin3x+sinx/cos5x-cosx​

Answers

Answered by ShreyanshuGulkari
3

Answer:

Join / Login

Question

Prove that =cos5x−cosxsin5x−2sin3x+sinx=tanx

Medium

Open in App

Solution

Verified by Toppr

Formula:

sinC−sinD=2cos(2C+D)sin(2C−D)

cosC−cosD=−2sin(2C+D)sin(2C−D)

LHS=cos5x−cosxsin5x−2sin3x+sinx

=cos5x−cosx(sin5x−sin3x)−(sin3x−sinx)

=−2sin3xsin2x2cos4xsinx−2cos2xsinx

=−2sin3xsin2x2sinx(cos4x−cos2x)

=−2sin3x(2sinxcosx)

Answered by llPrettyStrangerll
34

Prove that -

 \frac{sin \: 5x - 2sin \: 3x \:  + sin \: x}{cos \: 5x - cos \: x}  = tan \: x

Formula -

sin( - sin \: d = 2 \: cos( \frac{c + d}{2} )sin( \frac{c - d}{2} )

cos \: c  - cos \: d =  - 2sin \frac{c + d}{2}sin \frac{c - d}{2}

LHS -

 =  \frac{sin \: 5x -2 sin \: 3x + sin \: x}{cos \: 5x - cos \: x}

  = \frac{(sin \:  \: 5x \:  - sin \: 3x) - (sin \: 3x - sin \: x)}{cos \: 5x - cos \: x}

  = \frac{2 \: cos \: 4 \:x \: sin \: x - 2 \: cos \: 2x \: sin \: x}{ - 2 \: sin \: 3x \: sin \: 2x}

 =  \frac{2 \: sin \: x \: ( \:  - 2 \: sin \: 3x \: sin \: x)}{ - 2 \: sin \: 3x \: (2 \: sin \: x \: cos \: x)}

 =  \frac{sin \: x}{cos \: x}

= tan x = RHS

LHS = RHS

━━━━━━━━━━━━━━━━━━━〢〢〢〢

Similar questions