prove that sin5x-2sin3x+sinx/
cos5x-cosx =tanx
Answers
Answered by
15
EXPLANATION.
⇒ sin5x - 2sin3x + sinx/cos5x - cosx = tanx.
As we know that,
Formula of :
⇒ sin(C) + sin(D) = 2sin(C + D)/2.cos(C - D)/2.
⇒ cos(C) - cos(D) = 2sin(C + D)/2.sin(D - C)/2.
Using this formula in equation, we get.
As we know that,
Formula of :
⇒ cos2θ = 1 - 2sin²θ.
⇒ sin2θ = 2sinθ.cosθ.
Using this formula in equation, we get.
MORE INFORMATION.
Trigonometric ratios of multiple angles.
(1) = sin2θ = 2sinθ.cosθ = 2tanθ/1 + tan²θ.
(2) = cos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ = 1 - tan²θ/1 + tan²θ.
(3) = tan2θ = 2tanθ/1 - tan²θ.
(4) = sin3θ = 3sinθ - 4cos³θ.
(5) = cos3θ = 4cos³θ - 3cosθ.
(6) = tan3θ = 3tanθ - tan³θ/1 - 3tan²θ.
Similar questions
Environmental Sciences,
2 months ago
English,
5 months ago
Social Sciences,
5 months ago
Hindi,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago