prove that: sin6A+cos6A =1-3sin2A.cos2A
Answers
Answered by
60
Hey ;!!
Cos^6A + sin^6A
=(Cos³A)² +( Sin³A)²
= (cos²A + sin²A ) ( Cos⁴A+ Sin⁴A - Cos²A×Sin²A)
= [°•° a³ + b³ = (a+b ) ( a²+ b²-ab)]
= (1 )(cos²A )² + (sin²A)² - 2cos²A× sin²A - cos²A× sin²A
= [ a²+ b² =[ (a+b)² -2ab ]
= 1²- 3sin²A×cos²A
= 1 - 3sin²A×cos²A RHS prooved
hope it helps !!!
#Rajukumar111@@@@
Cos^6A + sin^6A
=(Cos³A)² +( Sin³A)²
= (cos²A + sin²A ) ( Cos⁴A+ Sin⁴A - Cos²A×Sin²A)
= [°•° a³ + b³ = (a+b ) ( a²+ b²-ab)]
= (1 )(cos²A )² + (sin²A)² - 2cos²A× sin²A - cos²A× sin²A
= [ a²+ b² =[ (a+b)² -2ab ]
= 1²- 3sin²A×cos²A
= 1 - 3sin²A×cos²A RHS prooved
hope it helps !!!
#Rajukumar111@@@@
Answered by
31
Hello friend,
Here's your answer:
As Cos^6A + sin^6A
=>(Cos³A)² +( Sin³A)²
=> (cos²A + sin²A ) ( Cos⁴A+ Sin⁴A - Cos²A×Sin²A)
=> Therefore [ a³ + b³ = (a+b ) ( a²+ b²-ab)]
=> (1 )(cos²A )² + (sin²A)² - 2cos²A× sin²A - cos²A× sin²A
=> [ a²+ b² =[ (a+b)² -2ab ]
=> 1²- 3sin²A×cos²A
=> 1 - 3sin²A×cos²A
Hope my answer helps you.
Harith
Maths Aryabhatta
Here's your answer:
As Cos^6A + sin^6A
=>(Cos³A)² +( Sin³A)²
=> (cos²A + sin²A ) ( Cos⁴A+ Sin⁴A - Cos²A×Sin²A)
=> Therefore [ a³ + b³ = (a+b ) ( a²+ b²-ab)]
=> (1 )(cos²A )² + (sin²A)² - 2cos²A× sin²A - cos²A× sin²A
=> [ a²+ b² =[ (a+b)² -2ab ]
=> 1²- 3sin²A×cos²A
=> 1 - 3sin²A×cos²A
Hope my answer helps you.
Harith
Maths Aryabhatta
Similar questions