prove that sin6teta + cos6teta + cos2teta +sin2teta =1
Answers
Answered by
1
Answer:
Hence proved
Step-by-step explanation:
sin 6 θ+cos 6 θ+3sin 2 θcos 2 θ
⇒LHS=(sin 2 θ) 3 +(cos 2 θ) 3 +3sin 2 θcos 2 θ
Using, [a 3 +b 3 =(a+b) 3−3ab(a+b)]
⇒LHS=(sin 2 θ+cos 2 θ) 3 −3sin 2 θcos 2 θ(sin2θ+cos 2 θ) 3 +3sin 2 θcos 2 θ
⇒LHS=1−3sin 2 θcos 2 θ+3sin 2 θcos 2 θ=1=RHS
Similar questions