Math, asked by pritimajumder4540, 2 months ago

Prove that Sin⁶theta by 2+ Cos⁶theta by 2 = 1 by4 ( 1 + 3 cos²theta).
:-(

Attachments:

Answers

Answered by sandy1816
5

Step-by-step explanation:

 {sin}^{6}  \frac{ \theta}{2}  +  {cos}^{6}  \frac{ \theta}{2}  \\  =  { ({sin}^{2} \frac{ \theta}{2}  })^{3}  + ( { {cos}^{2} \frac{ \theta}{2}  })^{3}  \\  = ( {sin}^{2}  \frac{ \theta}{2}  +  {cos}^{2}  \frac{ \theta}{2} )( {sin}^{4}  \frac{ \theta}{2}   +  {cos}^{4}  \frac{ \theta}{2}  - sin ^{2}  \frac{ \theta}{2} cos ^{2}  \frac{ \theta}{2} ) \\  =  {sin}^{4}  \frac{ \theta}{2}  +  {cos}^{4}  \frac{ \theta}{2}  -  {sin}^{2}  \frac{ \theta}{2}  {cos}^{2}  \frac{ \theta}{2}  \\  = ( { {cos}^{2} \frac{ \theta}{2} -  {sin}^{2}  \frac{ \theta}{2}   })^{2}  + sin ^{2}  \frac{ \theta}{2}  {cos}^{2}  \frac{ \theta}{2}  \\  = (cos2. \frac{ \theta}{2} ) ^{2}  +  \frac{1}{4} ( {2sin \frac{ \theta}{2}cos \frac{ \theta}{2}  })^{2}  \\  =  {cos}^{2}   \theta +  \frac{1}{4} sin ^{2}  \theta \\  =  {cos}^{2}  \theta \:  +  \frac{1}{4}  -  \frac{1}{4}  {cos}^{2}  \theta \\  =  \frac{1}{4}  + ( {cos}^{2}  \theta -  \frac{1}{4}  {cos}^{2}  \theta) \\  =  \frac{1}{4}  +  \frac{3 {cos}^{2} \theta }{4}  \\  =  \frac{1}{4} (1 + 3 {cos}^{2}  \theta)

Similar questions