Math, asked by sarthaktayade8e20, 3 months ago

prove that:. sin⁶theta +cos⁶ theta = 1-3 sin² theta . cos²theta​

Answers

Answered by anonymous0903
2

Step-by-step explanation:

LHS =(sin^2 theta + cos^2 theta)^3

=1

RHS

= sin^6 theta +cos^6 theta+3sin^2 theta ×cos^2 theta ( sin ^2 theta + cos ^2 theta)

= sin^6 theta +cos^6 theta+3sin^2 theta ×cos^2 theta

Taking 3sin^2 theta ×cos^2 theta from LHS to RHS

LHS = 1 -3sin^2 theta ×cos^2 theta

Now we have,

sin^6 theta +cos^6 theta = 1 -3sin^2 theta ×cos^2 theta

( as we have just transposed the terms using ( a+b)^3 = a^3+ b ^3 + 3 ab ( a + b ) identity....

Hence proved

Answered by mathdude500
2

\large\underline{\sf{Given- }}

 \sf \: Prove \:  that :  \:  {sin}^{6}  \theta \:  +  \:  {cos}^{6}  \theta = 1 - 3 {sin}^{2}  \theta \:  {cos}^{2}  \theta

\large\underline{\sf{Solution-}}

We know,

 \boxed{ \bf \:  {x}^{3}  +  {y}^{3}  =  {(x + y)}^{3} - 3xy(x + y) }

and

 \boxed{ \bf \:  {sin}^{2} \theta +  {cos}^{2}   \theta = 1}

Now,

Consider,

\rm :\longmapsto\: {sin}^{6}  \theta +  {cos}^{6}  \theta

can be rewritten as

 \sf \:  \:  \:  \:  =  \:  \:  {\bigg(  {sin}^{2} \theta \bigg) }^{3}  +  { \bigg( {cos}^{2} \theta\bigg) }^{3}

 \sf \:  \:  \:  \:  =  \:  \:  {\bigg({sin}^{2} \theta +  {cos}^{2} \theta \bigg) }^{3}  - 3 {sin}^{2}  \theta \:  {cos}^{2}  \theta \: \bigg(  {sin}^{2} \theta +  {cos}^{2} \theta\bigg)

 \sf \:  \:  \:  \:  =  \:  \:  {(1)}^{3}  - 3 \:  {sin}^{2} \theta \:  {cos}^{2} \theta \times 1

 \sf \:  \:  \:  \:  =  \:  \: 1 - 3 \:  {sin}^{2}  \theta \:  {cos}^{2}  \theta

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions