prove that Sin6x+Sin2x-Sin4x=0
Answers
Answered by
1
Step-by-step explanation:
(sin2x+sin6x)−sin4x=0
⇒2sin(
2
2x+6x
)cos(
2
2x−6x
)−sin4x=0
⇒2sin4xcos2x−sin4x=0
⇒sin4x(2cos2x−1)=0
⇒sin4x=0,2cos2x−1=0
⇒sin4x=0,cos2x=
2
1
∴4x=nπ,2x=2nπ±
3
π
∴x=
4
nπ
,nπ±
6
π
where n∈Z
Answered by
0
Answer:
let X be 30 degree.
Now we have,
sin 6X = sin 180 = o
sin 4x = sin 120 = sin (180- 60) = sin 60 =(root3) /2
sin 2X = sin 60= (root3)/2
sin 6X + sin2X - sin4X = 0.
Similar questions