prove that sin75° + sin15° =√6/2
Answers
Answer:
We have a set of formulae to transform the sum of two sines or two cosines into the product of sines and cosines.
These are;
1. sinA + sinB = 2 sin[(A+B)/2]*cos[(A-B)/2].
2. sinA - sinB = 2 sin[(A-B)/2]*cos[(A+B)/2].
3. cosA + cosB = 2cos[(A+B)/2]*cos[(A-B)/2].
4. cosA - cosB = -2sin[(A+B)/2]*sin[(A-B)/2].
Now, coming to the question;
We can easily apply 1st formula above to find the answer of this question ....
We have;
sin 75 + sin 15
= 2 sin[(75+15)/2] * cos[(75-15)/2]
= 2 sin[90/2] * cos[60/2]
= 2 sin45 * cos30
= 2 * 1/(2^1/2) * (3^1/2)/2
= (3/2)^1/2.
i.e., root (3/2).
Step-by-step explanation:
Answer:
Use formula sinA + sinB = 2 sin[(A+B)/2]×cos[(A-B)/2]
Step-by-step explanation:
sin 75 + sin 15
= 2 sin[(75+15)/2] × cos[(75-15)/2]
= 2 sin[90/2] ×cos[60/2]
= 2 sin45 ×cos30
= 2 × 1/(2^1/2) ×(3^1/2)/2
= (3/2)^1/2.
=√3/2