prove that sin7x+sin5x+sin9xsin3x/cos7x+cos5x+cos9x+cos3x=tan6x
Answers
Answered by
1
Answer:
LHS = [(sin7x + sin5x) + (sin9x + sin3x)]/[(cos7x + cos5x) + (cos9x + cos3x)]
use the formula,
sinC + sinD = 2sin(C+D)/2.cos(C-D)/2
cosC + cosD = 2cos(C+D)/2.cos(C-D)/2
= {2sin6x.cosx +2sin6x.cos3x}/{2cos6x.cosx + 2cos6x.cos3x}
= 2sin6x.(cosx + cos3x)/2cos6x(cosx+cos3x)
= sin6x/cos6x
= tan6x = RHS
Similar questions
Social Sciences,
4 months ago
Social Sciences,
8 months ago
Physics,
8 months ago
Hindi,
1 year ago
Math,
1 year ago